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State Transitions as Morphisms for Complete
Lattices†
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We enlarge the hom-sets of categories of complete lattices by introducing ‘state
transitions’ as generalized morphisms. The obtained category is then compared
with a functorial quantaloidal enrichment and a contextual quantaloidal
enrichment that uses a specific concretization in the category of sets and partially
defined maps (3arset).

1. INTRODUCTION

In this paper we present a construction that abstracts the concept of
‘state transition’ as introduced in Amira et al. (1998) and Coecke and Stubbe
(1999a, b), making it applicable to any subcategory ! of 7#+at. We compare
this construction, the result of which is a quantaloid that we call 4st!, with
two other quantaloidal extensions that arise naturally when considering the
action of the power-functor on !. In fact, one of these natural extentions is
functorial, we denote it by 42!, and the other, called 4+!, is contextual in
the sense that its construction relies entirely on the fact that ! is a 3arset-
concrete category. The main result of this paper is then that in all nontrivial
cases 4st! lies strictly between 42! and 4+!.

Applying the construction 4st to the category 3rop, which was intro-
duced in Moore (1995, 1999), reveals that the latter has to be ‘enriched’ in
order to constitute an appropriate mathematical object for defining ‘state
transitions’. However, it must be noted that the physical inspiration for our
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categories is essentially different from Moore’s: 3rop is constructed to express
the equivalence of a property lattice and a state space description for a
physical system as a categorical equivalence of 3rop and 6tate, inspired by a
similar situation for categories for projective geometries (Faure and Frölicher,
1993, 1994), and delivers the mathematical context that embeds the proof of
Piron’s representation theorem (Piron, 1964, 1976). On the contrary, we
propose a dualization/generalization for the notion of property transition,
previously motivated to be a join-preserving map (Pool, 1968; Faure et al.,
1995; Amira et al., 1998).

2. ‘Enriching’ 3arset-CONCRETE CATEGORIES

For a general overview of the theory of categories we refer to Adamek
et al. (1990) and Borceux (1994). For quantaloids we refer to Pitts (1988)
and Rosenthal (1991).

Definition 1. A quantaloid is a category such that:
(i) Every hom-set is a complete lattice; its join is usually denoted by ∨.
(ii) Composition of morphisms distributes on both sides over arbitrary

joins.
Let 4 and 48 be quantaloids. A quantaloid morphism from 4 to 48 is

a functor F: 4 → 48 such that on hom-sets it induces join-preserving maps
4(A, B) → Q8(FA, FB).

For example, 7#+at is the quantaloid of complete lattices and join-
preserving maps in which the join of maps is computed pointwise. A quanta-
loid with one object is commonly known as a ‘unital quantale’; a quantaloid
morphism between two one-object quantaloids is known as a ‘unital quantale
morphism’ (Rosenthal, 1990). Any subcategory of a quantaloid that is closed
under the inherited join of morphisms is a subquantaloid. Thus any full
subcategory of a quantaloid is a subquantaloid, and selecting from a given
quantaloid certain morphisms, but keeping all the objects gives rise to a
subquantaloid if and only if the inherited join of morphisms is internal.

Let 3arset denote the category of sets A, B, . . . and partially defined
functions f : A \K → B, where K # A is called the ‘kernel’ of the partially
defined function f, also written as ker f. Then the power-functor is defined as

3: 3arset → 7#+at

: H A . 2A

f : A \ K → B . 3f : 2A → 2B: T . { f(t).t P T \K}

that is, sets are mapped onto their power-sets, partially defined functions are
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mapped onto the ‘direct image mapping’ which is indeed a union-preserving
map. This functor is faithful and injective, but neither full nor surjective.

For any 3arset-concrete category !, that is, a category that comes
equipped with a faithful functor U: ! → 3arset, we can compose functors
! →U 3arset →3 7#+at and use this to define a category that we shall denote
by 3!: it has the same objects as !, and for the hom-sets we define

3!(A, B) 5 {(3 + U )( f ). f P !(A, B)}

So in particular the hom-sets are posets for the pointwise order. Any functor
F: ! → @ between two such categories ! →U 3arset and @ →V

3arset
defines a functor

3F: 3! → 3@

: H A . FA
3Uf: 2UA → 2UB . 3VFf: 2VFA → 2VFB

which is to say that 3 is functorial on the quasicategory of 3arset-con-
crete categories.3

Since 3!(A, B) # 7#+at(2UA, 2UB) for any two 3!-objects A and B,
we can define a category 4+! with the same objects as 3! (thus the same
objects as !), but of which the hom-sets are precisely

4+!(A, B) 5 7#+at(2UA, 2UB)

Explicitly this means that a morphism f : A → B in 4+! is determined by
an underlying union-preserving map f : 2UA → 2UB. So 4+! is a quantaloid
with respect to the pointwise union of maps. Second, by 42! we shall denote
the category with the same objects as 3! (thus the same objects as ! and
as 4+!), but of which the hom-sets are the complete lattices that one obtains
if one closes the 3!-hom-sets for (arbitrary) pointwise unions of maps: a
morphism f : A → B in 42! is thus determined by an underlying map øi38fi ,
the join of maps being their pointwise union, for a set of !-morphisms { fi:
A → B}i. If ! is a category in which every hom-set contains a nonzero
element—that is, for any two objects A,B of ! there is an f P !(A, B) such
that kerUf Þ domUf—then any hom-set of 3! contains a nonzero map,
thus any hom-set of 42! is a complete lattice (the condition on the hom-
sets of ! makes sure that any hom-set of 42! contains at least distinct
bottom and top which we require for any complete lattice), so 42! is a

3 Remark that 6et is the subcategory of 3arset with the same objects, but all morphisms of
which have an empty kernel, and that the domain restriction of 3 to 6et yields that, for any
morphism f : A → B in 6et, 3f : 2UA → 2UB is a union-preserving map that maps only the
empty set on the empty set: (3f )(T ) 5 0⁄ ⇔ T 5 0⁄ .
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quantaloid with respect to pointwise union of morphisms. For a functor F:
! → @ between two such categories ! →U 3arset and @ →V

Parset, we can
define a corresponding quantaloid morphism

42F: 42! → 42@

: H A . FA
øi3Ufi: 2UA → 2UB . øi3VFfi: 2VFA → 2VFB

which translates the idea that the construction of 42! is functorial. Note
that no such functor can exist for the 4+ case because in 4+! there may be
morphisms for which there exists no connection at all with !-morphisms!
So we could say that 42! is a ‘functorial’ enrichment of !, and 4+! merely
a ‘contextual’ enrichment.

By construction, 42! is a subquantaloid of 4+! since the hom-sets of
the former are join-sublattices of the hom-sets of the latter (they have the
same objects). For an important class of categories this inclusion is strict:
we will consider a category ! of which the objects are bounded posets
(partially ordered sets with a greatest element 1 and a least element 0, these
elements being different) and the morphisms are isotone mappings that map
least elements onto least elements (that is, 0 . 0), together with a forget-
ful functor

U: ! → 3arset

: H (A, #) . A0

f : (A, #) → (B, #) . Uf: A0 \K → B0: t . f (t)

where K 5 {t P A0.f(t) 5 0} 5 kerUf and A0 5 A \{0}. From now on, we
will always assume that every hom-set has at least one nonzero element, to
assure that the construction 42! yields a quantaloid.

Proposition 1. For such a category !, 42! 5 4+! if and only if all
objects of ! are 2-chains.

Proof. If ! contains an object (A, #) in which there exists 0 , a , 1, then

f : 2A0 → 2A0: HT . {a} ⇔ a P T
T . 0⁄ ⇔ a ¸ T

is trivially a union-preserving map, thus f P 4+!(A, A). For this f to be a
morphism of 42! as well, there must be a set of !-morphisms hi: A → A
such that precisely f 5 øi 3Uhi:

∀T P 2A0: f(T ) 5 øi{Uhi (t).t P T \kerUhi}

Since f ({1}) 5 0⁄ , we must have that hi (1) 5 0 for all those hi , but on the
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other hand f({a}) 5 {a}, which means that at least one hk is such that hk(a) 5
a. But this contradicts the isotonicity of the !-morphism hk. If on the contrary
the category ! contains only posets which are (isomorphic to) 2-chains, then
it is merely an observation that the functorial and the contextual enrichment
are the same. n

As an example, consider

U: 7#+at → 3arset

: H (L, ∨) . L0

f : (L, ∨) → (M, ∨) . Uf: L0 \kerUf → M0: t . f (t)

With respect to this faithful functor we have the following categories, all
three with as objects complete lattices:

• 37#+at: a morphism f : (L, ∨) → (M, ∨) corresponds to the image
3Uf: 2L0 → 2M0 of a join-preserving map f : L → M (thus the underlying
map preserves unions).

• 427#+at: a morphism f : (L, ∨) → (M, ∨) corresponds to a map
f : 2L0 → 2M0 that can be written as the pointwise union of 37#+at-maps
(then it automatically preserves unions).

• 4+7#+at: a morphism f : (L, ∨) → (M, ∨) corresponds to a map
f : 2L0 → 2M0 that preserves unions.

As a corollary of Proposition 1, the quantaloid inclusion

427#+at \ 4+7#+at

is strict. In the next section we introduce the notion of ‘state transition’
as morphism between complete lattices, and show that these can organize
themselves in a quantaloid that lies between 427#+at and 4+7#+at.

3. ‘STATE TRANSITIONS’ AS MORPHISMS BETWEEN
COMPLETE LATTICES

Given two complete lattices (L, ∨), (M, ∨) and a map f : 2L0 → 2M0 that
preserves unions, it is easy to verify that if there exists a map g: L → M
that makes

L →g
M

↑∨ ↑∨

2L0 →f
2M0

commute (the vertical uparrows denoting, for the respective lattices, the maps
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T . ∨T ), then this map g is a unique 7#+at-morphism. Therefore the
following definition makes sense:

Definition 2. Given a subcategory ! of 7#+at and two of its objects
(L, ∨), (M, ∨), a union-preserving map f : 2L0 → 2M0 is called state transition
with respect to ! if there exists an !-morphism fpr: L → M that makes
the diagram

L →
fpr

M
↑∨ ↑∨

2L0 →f
2M0

commute. This (unique) morphism fpr is then called the property transition
corresponding to f.

For a given subcategory ! of 7#+at all morphisms of 3! are state
transitions with respect to !:

Proposition 2. For every !-morphism f we have that (3Uf )pr 5 f. For
every set { fi}iPI of parallel !-morphisms we have that (øi3Ufi)pr 5 ∨i fi ,
these joins being computed pointwise.

Proof. For f :(L, ∨) → (M, ∨) in ! the direct image map
3Uf: 2L0 → 2M0 is union-preserving, and for any T P 2L0: ∨3Uf(T ) 5
∨{Uf(t).t P T \kerUf} 5 ∨{ f (t).t P T} 5 f(∨T ). The second assumption
can be proven likewise. n

This proposition does not say that any 42!-morphism, which is by
definition an arbitrary pointwise union of 3!-morphisms, is a state transition
with respect to !, for it may very well be that, even with all fi in !, the
corresponding property transition (øi3Ufi)pr 5 ∨i fi is not an !-morphism.
So in general any 42!-morphism is a state transition only with respect to
7#+at. But it follows immediately that:

Corollary 1. Every 42!-morphism is a state transition with respect to
! if and only if ! is a subquantaloid of 7#+at.

For any state transition f (the subcategory ! is of no importance here)
and any T, T8 P 2L0 we have

∨T 5 ∨T8 ⇒ ∨f(T ) 5 ∨f(T8) (1)

because ∨f(T ) 5 g(∨T ) 5 g(∨T8) 5 ∨f(T8). But the converse is also true:
any union-preserving map f : 2L0 → 2M0 that meets Eq. (1) is a state transition
with respect to 7#+at, since in this case the map

fpr: L → M: t 5 ∨T . ∨f(T )

is a well-defined 7#+at-morphism that makes the square commute. Thus:
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Proposition 3. A map f : 2L0 → 2M0 is a state transition with respect to
7#+at if and only if it preserves unions and meets the condition of Eq. (1).

In fact, this proposition was taken as definition for ‘state transition (with
respect to 7#+at)’ in Coecke and Stubbe (1999a, b) and, under a slightly
different form, in Amira et al. (1998). Remark that the conditions in this
proposition are also necessary for f to be a state transition with respect to
!, a subcategory of 7#+at, but in general not sufficient. This will prove
its use in Proposition 4.

By pasting together commuting diagrams, it is easily seen that the
composition of any two state transitions (with respect to a certain !) is again
a state transition (with respect to that same !) with corresponding property
transition (g + f )pr 5 gpr + fpr. Trivially also the diagram with identities
commutes, thus identities on power-sets are state transitions (with respect to
whatever !) with corresponding property transition (id2L0)pr 5 idL:

L →
fpr

M →
gpr

N L →
idL

L
↑∨ ↑∨ ↑∨ ↑∨ ↑∨

→f →g
2L0 2M0 2N0 2L0 —→

id2L0

2L0

This means that for a given subcategory ! of 7#+at we can define a
category 4st! with the same objects as !, in which a morphism f : (L, ∨)
→ (M, ∨) is determined by an underlying state transition with respect to !.
This category contains 3! (by Proposition 2) and is in turn a subcategory
of 4+!:

3! \ 4st! \ 4+!

The foregoing is best summarized by the functor

Fpr: 4st! → !: H(L, ∨) . (L, ∨)
f . fpr

which is full because Fpr + 3: ! → ! is the identity (see Proposition 2);
this fact expresses explicitly the duality of state transitions and property
transitions (with respect to !).

4. STATE TRANSITIONS AND QUANTALOIDS

If, moreover, ! is a subquantaloid of 7#+at, then commutation of the
left diagram for each i P I implies commutation of the right diagram:

L →
fi,pr

M L →
~ifi,pr

M
↑∨ ↑∨ ↑∨ ↑∨

2L0 →
fi

2M0 2L0 →
øifi

2M0
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since these joins of maps are computed pointwise, which is to say that, if !
is a subquantaloid of 7#+at, then 4st! is a quantaloid and the functor Fpr:
4st! → ! is a full quantaloid morphism. 4st! is then a subquantaloid of
4+!, and it contains 42! as subquantaloid (by virtue of Corollary 1 and
the fact that in all three quantaloids joins of morphisms are computed as
pointwise unions):

42! \ 4st! \ 4+!

Next we point out in detail the relations among these three different
constructions.

Proposition 4. For a subcategory ! of 7#+at, 4st! 5 4+! if and only
if all objects of ! are 2-chains.

Proof. If ! contains an object in which there is a chain, 0 , a , 1.
With the “same” counterexample as in the proof of Proposition 1 it can be
seen that ∨f ({1}) 5 ∨0⁄ 5 0 Þ a 5 ∨{a} 5 ∨f ({a, 1}), although ∨{1} 5
∨{a, 1}, which contradicts Proposition 3, such that f cannot be a state transition
with respect to 7#+at and a fortiori f cannot be a state transition with
respect to !, a subcategory of 7#+at. Conversely, if ! contains only 2-
chains, then it is trivial that 4st! 5 4+!. n

Proposition 5. For a subcategory ! of 7#+at, 42! Ý 4st! if there
is an !-object (L, ∨) in which there exist elements a, b, c such that a , b
∨ c, a Ü b, a Ü c.

Proof. Consider the map

f : 2L0 → 2L0: 5
{t} . {t} for t Þ b ~ c
{b ~ c} . {a, b, c}
T . øtPT f ({t})

for which clearly fpr 5 idL , thus it is a state transition (with respect to
whatever !). Let g: L → L be a join-preserving map that maps a . a; then
3g # f ⇒ 3g({b ∨ c}) # f ({g ∨ c}) ⇒ g(b) ∨ g(c) P {a, b, c} ⇒ g(a) #
g(b ∨ c) 5 g(b) ∨ g(c) P {a, b, c} and g(a) 5 a ⇒ a 5 g(b) ∨ g(c) ⇒
g(b) # a and g(c) # a. Should g(b) 5 a, then 3g({b}) 5 {a} and thus 3g
Ü f. If on the contrary g(b) , a, then g(c) 5 a because g(c) , a would
imply that g(b) ∨ g(c) , a, but then 3g({c}) 5 {a} and thus 3g Ü f.
Therefore, for any g P 7#+at(L, L) such that 3g # f we necessarily have
that g(a) 5 0. But then it is impossible to ever write a pointwise union f 5
~i 3gi with {gi}i # 7#+at(L, L) because the join on the right-hand side
always fails to map {a} . {a}. n
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Corollary 2. If ! is a subquantaloid of 7#+at that contains an object
in which there exist elements a, b, c such that a , b ∨ c, a Ü b, a Ü c,
then both the inclusions of quantaloids 42! \ 4st! \ 4+! are strict.

As 7#+at is a trivial subquantaloid of 7#+at, we have the full quanta-
loid morphism

Fpr; 4st7#+at → 7#+at: H(L, ∨) . (L, ∨)
f . fpr

expressing explicitly the duality between state transitions and property transi-
tions. Since 4st7#+at contains 427#+at, which in turn contains 42! for
any subcategory ! of 7#+at, we can consider Fpr42!, the image of 42!
through this functor: this is the smallest subquantaloid of 7#+at that contais
!; it emerges by closing all hom-sets !(A, B) # 7#+at(A, B) for arbitrary
(pointwise) joins. Evidently, if ! is a subquantaloid of 7#+at, then and only
then ! 5 Fpr42!. It can be verified straightforwardly that the assignment !
. Fpr42! is functorial; we will denote the corresponding functor (that thus
acts on subcategories of 7#+at and functors between these) as % and we
will refer to %! as the preenrichment of !. Obviously the quantaloid 42!
is included in 42%!, so we can write the following inclusion of quantaloids
as generalization of the previous material:

42! \ 42%! \ 4st%! \ 4+%!

Using the various previous propositions, we can give conditions for these
inclusions to be strict.

5. CONCLUSION AND EXAMPLES

Theorem 1. For any subcategory ! of 7#+at that contains an object
in which there exist elements a, b, c such that a , b ∨ c, a Ü b, a Ü c, the
quantaloid inclusions 42%! \ 4st%! \ 4+%! are strict. Here % stands
for the minimal extension of ! to a quantaloid, ! . ^pr42!. If, moreover,
! is a subquantaloid of 7#+at, then %! 5 !.

The essence of having an inclusion 42! \ 4st!—or forcing it as
42%! \ 4st%!—should be understood in the following way: The join of
maps in 4st! physically stands for a lack of knowledge on possible state
transitions (Amira et al., 1998; Coecke and Stubbe, 1999a). Therefore, any
general collection of state transitions should be closed under joins, which in
the case of a categorical formulation leads to a quantaloid structure. The
inclusion 42! \ 4st! then follows by Corollary 1.

Let us now apply all this to some particular categories that have applica-
tions in physics. Consider the subcategory 7#+at1 of 7#+at introduced in
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Coecke and Moore, (1999) with as objects complete lattices Li with ‘fixed’
top 1 and an element 1i such that ∀ai Þ 1: ai # 1i , and as morphisms join-
preserving maps with 1 . 1 or maps of which the image is {0}. Since it is
a subquantaloid of 7#+at, being itself also a quantaloid for pointwise order,
all the above considerations that apply to 7#+at apply to 7#+at1.

Let 7#!+at be the category of complete atomistic lattices with as
morphisms join-preserving maps that assign atoms to atoms or the least
element (Faure and Frölicher, 1993, 1994). If we apply % to this category,
we obtain a full subcategory %7#!+at of 7#+at as preenrichment. This
is the minimal extension of 7#!+at that assures that all by 42 induced
morphisms are state transitions. Since the category 3rop introduced in Moore
(1995) is a full subcategory of )#!+at by restricting objects complete
orthocomplemented atomistic lattices, all the above applies to it, i.e., within
this context one should rather consider %3rop.
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